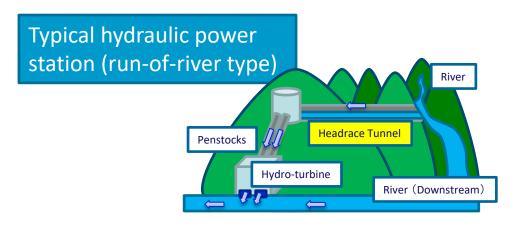


Research and Development of a Multi-copter for Autonomous Inspection of Headrace Tunnels of Hydraulic Power Stations

Sustainable System Research Lab. Central Research Institute of Electric Power Industry Koichi Yonezawa

Japan-Korea Joint Workshop on Rotorcraft

February 10th, 2023


Background: Maintenance of Hydro Power Stations

Large-scale earthquakes

e. g. 2016 Kumamoto earthquakes: (Magnitude 6.2 -> 7.3 -> 7.1->... 400 times, in a week)

Flood Disasters

Typhoons, Torrential rains -> landslides, floods, etc.

 It is necessary to ascertain damages of facilities.

Inspection by workers is dangerous. Unmanned inspection systems should be developed.

Autonomous Drone for Disaster Response

Why drones in headrace tunnels ?

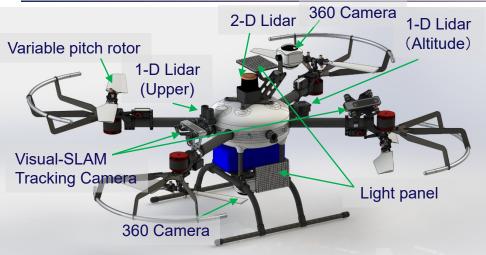
- 1) Water or sediment remains on the floor.
- 2) There are large step structures or steep slopes.
- 3) Distances can range to several kilometers.

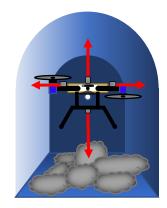
Technical issues

- 1) Many tunnels have smaller cross-sections than traffic tunnels.
- 2) GPS is not available and radio control from the outside is difficult.
- 3) No lighting facilities.
- 4) Hard environmental conditions, including water leakage from ceilings.

Today's topics

Development of a prototype of TUNNEL DRONE system


Investigation of aerodynamic characteristics



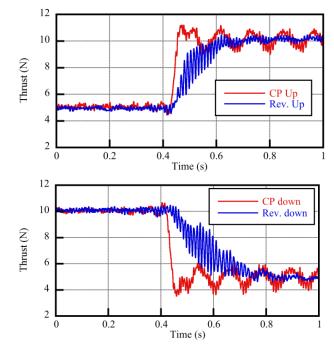
DEVELOPMENT OF A PROTOTYPE OF TUNNEL DRONE SYSTEM

Specifications of the Aircraft

Fully autonomous flight system

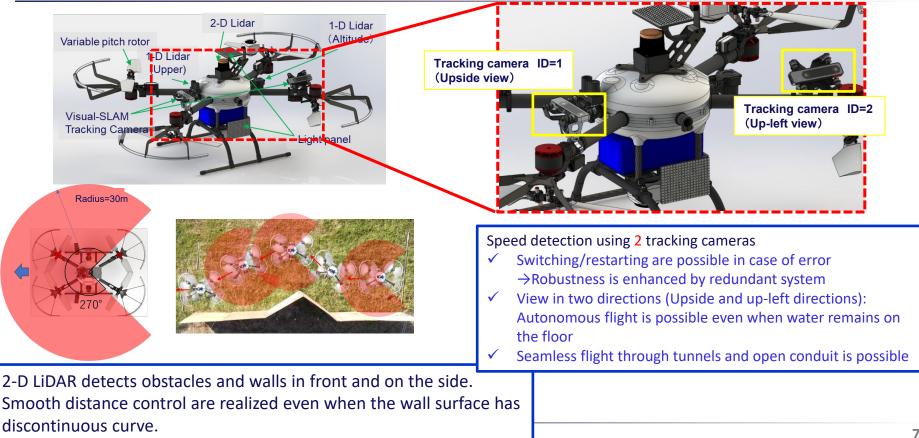
- ✓ High maneuverability
- ✓ Robust sensing and navigation system

Rotor	4 Units/15 inched/2 blades: 5400r.p.m. +Variable pitch control		
Battery	Li-Po 6S 20000mAh (Flight duration 12 minutes)		
Dimensions	1074(L) x 806(W) x 320(H) mm		
Waterproof / dustproof	IP55		
Veridical positioning	Upper/lower wall distance control or Altitude control		
Horizontal positioning	Left/right wall distance control		

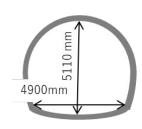


Rotors

Thrust control by variable collective pitch: Quicker response than rotational speed change


High maneuverability contributes to stabilize the attitude and motion of the aircraft in turbulence in tunnel.

Collective pitch control vs rotational speed control



Sensors and Navigation

Flight Demonstration (1)

MISSION:

A) Flight in low temperature $(-5^{\circ}C)$

B) Flight in fog

Low temperature \rightarrow Condensation occurs on optical sensors

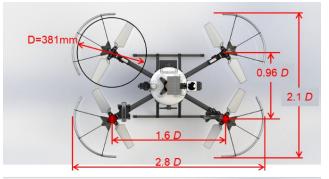
Fog \rightarrow Cause of Visual-SLAM error = Significantly exceeded target point

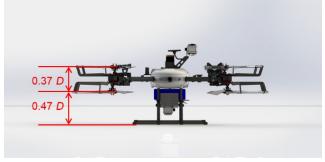
Flight Demonstration (2)

MISSION:

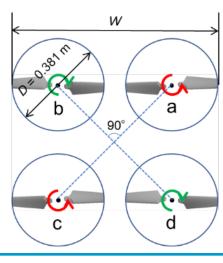
- 1. Flight in tunnels with small cross sections
- 2. Flight in a water conduit with a series of tunnels and open channel
- Small cross sections -> Highly turbulent around the aircraft
- Dirty water droplets from the ceiling in tunnel / Flying leaves in open channel

Variable-pitch-rotors contributed to the flight in turbulence. Robust optical-system maintained SLAM in various disturbances.

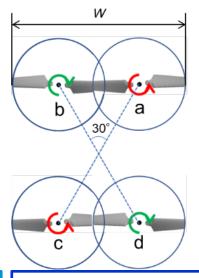

CRIEPI 202



INVESTIGATION OF AERODYNAMIC CHARACTERISTICS

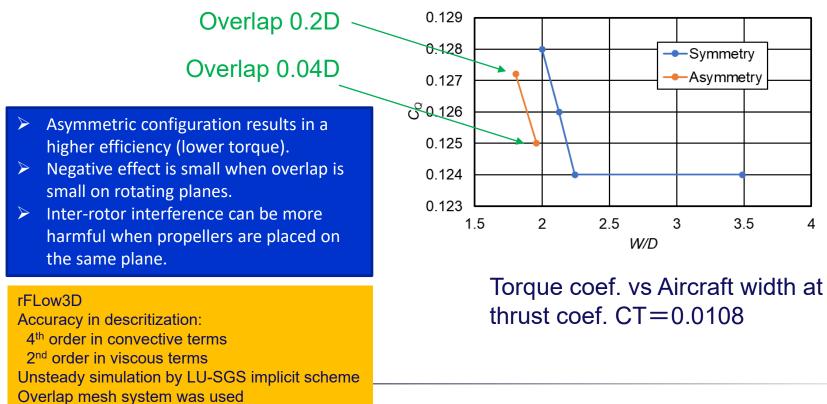


Geometry of the TUNNEL DRONE

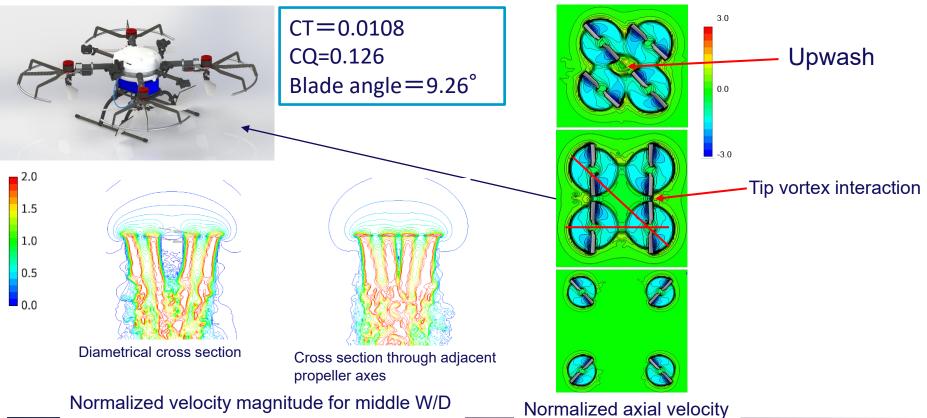


D: Rotor diameter (381 mm)

Symmetric configuration



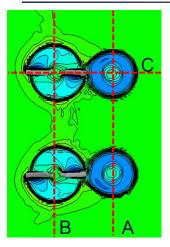
Asymmetric config. a/d: Upper, b/c: Lower There is overlap on the left and right propeller rotation planes. Narrow width is advantage for flight in small tunnel

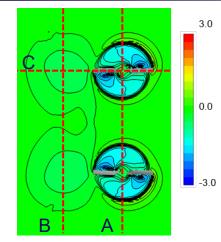

Aircraft width vs Torque coef. (Hovering)

Aerodynamics are evaluated using CFD (rFLow3D ©JAXA)

Observation of Flows around Symmetric Config.

© CRIEPI 2023

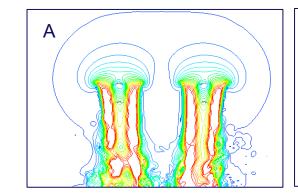

Normalized axial velocity for various W/D

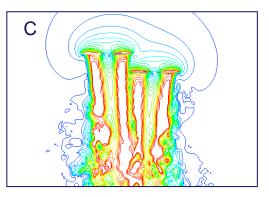


Observation of Flows around Asymmetric Config.

3.0

0.0

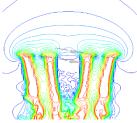




Lower rotational plane

Upper rotational plane

Normalized axial velocity in rotational plane (W/D=1.96)



Normalized axial velocity in cross-section A-C (W/D=1.96)

В

Observation of Flows around Asymmetric Config.

		C _T	CQ	θ			
	W/D	2.24					
-	ALL	0.0108	0.126	9.26			

Symmetric config.

		C _T	Cq	θ
)	W/D	1.96		
	Upper	0.0108	0.127	9.2
	Lower	0.0108	0.123	9.04
	Ave.	0.0108	0.125	9.1

Asymmetric config.

Upper rotor :

Aerodynamic loss increases

Interaction between front/rear rotor is small
Suction flow due to lower propeller induces loss on the upper rotor.

Lower rotor

Aerodynamic loss decreases

- Interaction between front/rear rotor is small
- Downwash from the upper rotor suppress the blade tip vortex and loss.

Propeller interaction effect between the left and right rotors is dominant. Propeller interaction effect between the front and rear rotors is small due to longer distance.

Conclusion

- A drone for unmanned inspection of headrace tunnels of hydraulic power station was developed.
- High maneuverability and robustness of sensing and navigation systems are confirmed by carrying out fully autonomous flight demonstrations in highly disturbed environments.
- An asymmetric aircraft configuration for flying through narrow tunnels was designed and its aerodynamic characteristics were investigated.
- \succ The rotor efficiency increases by overlapping the rotating planes less than 25%.